Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.837
Filtrar
1.
Lipids Health Dis ; 23(1): 136, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715054

RESUMO

BACKGROUND: Familial hypercholesterolemia (FH) is one of the most common autosomal dominant diseases. FH causes a lifelong increase in low-density lipoprotein cholesterol (LDL-C) levels, which in turn leads to atherosclerotic cardiovascular disease. The incidence of FH is widely underestimated and undertreated, despite the availability and effectiveness of lipid-lowering therapy. Patients with FH have an increased cardiovascular risk; therefore, early diagnosis and treatment are vital. To address the burden of FH, several countries have implemented national FH screening programmes. The currently used method for FH detection in Lithuania is mainly based on opportunistic testing with subsequent cascade screening of index cases' first-degree relatives. METHODS: A total of 428 patients were included in this study. Patients with suspected FH are referred to a lipidology center for thorough evaluation. Patients who met the criteria for probable or definite FH according to the Dutch Lipid Clinic Network (DLCN) scoring system and/or had LDL-C > = 6.5 mmol/l were subjected to genetic testing. Laboratory and instrumental tests, vascular marker data of early atherosclerosis, and consultations by other specialists, such as radiologists and ophthalmologists, were also recorded. RESULTS: A total of 127/428 (30%) patients were genetically tested. FH-related mutations were found in 38.6% (n = 49/127) of the patients. Coronary artery disease (CAD) was diagnosed in 13% (n = 57/428) of the included patients, whereas premature CAD was found in 47/428 (11%) patients. CAD was diagnosed in 19% (n = 9/49) of patients with FH-related mutations, and this diagnosis was premature for all of them. CONCLUSIONS: Most patients in this study were classified as probable or possible FH without difference of age and sex. The median age of FH diagnosis was 47 years with significantly older females than males, which refers to the strong interface of this study with the LitHir programme. CAD and premature CAD were more common among patients with probable and definite FH, as well as those with an FH-causing mutation. The algorithm described in this study is the first attempt in Lithuania to implement a specific tool which allows to maximise FH detection rates, establish an accurate diagnosis of FH, excluding secondary causes of dyslipidaemia, and to select patients for cascade screening initiation more precisely.


Assuntos
Algoritmos , LDL-Colesterol , Hiperlipoproteinemia Tipo II , Receptores de LDL , Humanos , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/sangue , Lituânia/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Receptores de LDL/genética , LDL-Colesterol/sangue , Testes Genéticos/métodos , Programas de Rastreamento/métodos , Idoso , Mutação , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/sangue
2.
Nutrients ; 16(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732511

RESUMO

Prenatal alcohol exposure (AE) affects cognitive development. However, it is unclear whether prenatal AE influences the metabolic health of offspring and whether postnatal AE exacerbates metabolic deterioration resulting from prenatal AE. Choline is a semi-essential nutrient that has been demonstrated to mitigate the cognitive impairment of prenatal AE. This study investigated how maternal choline supplementation (CS) may modify the metabolic health of offspring with prenatal and postnatal AE (AE/AE). C57BL/6J female mice were fed either a Lieber-DeCarli diet with 1.4% ethanol between embryonic day (E) 9.5 and E17.5 or a control diet. Choline was supplemented with 4 × concentrations versus the control throughout pregnancy. At postnatal week 7, offspring mice were exposed to 1.4% ethanol for females and 3.9% ethanol for males for 4 weeks. AE/AE increased hepatic triglyceride accumulation in male offspring only, which was normalized by prenatal CS. Prenatal CS also improved glucose tolerance compared to AE/AE animals. AE/AE suppressed hepatic gene expression of peroxisome proliferator activated receptor alpha (Ppara) and low-density lipoprotein receptor (Ldlr), which regulate fatty acid catabolism and cholesterol reuptake, respectively, in male offspring. However, these changes were not rectified by prenatal CS. In conclusion, AE/AE led to an increased risk of steatosis and was partially prevented by prenatal CS in male mice.


Assuntos
Colina , Suplementos Nutricionais , Etanol , Fígado , Camundongos Endogâmicos C57BL , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Gravidez , Colina/administração & dosagem , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Camundongos , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/etiologia , Triglicerídeos/metabolismo , PPAR alfa/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Intolerância à Glucose/prevenção & controle , Metabolismo dos Lipídeos/efeitos dos fármacos
3.
Zhonghua Zhong Liu Za Zhi ; 46(5): 399-408, 2024 May 23.
Artigo em Chinês | MEDLINE | ID: mdl-38742353

RESUMO

Objectives: To investigate the effect of the expression of low-density lipoprotein receptor associated protein (LDLR) on the vascular abnormalities in hepatocellular carcinoma (HCC) and its mechanisms. Methods: Based on the information of Oncomine Cancer GeneChip database, we analyzed the correlation between the expression level of LDLR and the expression level of carcinoembryonic antigen (CEA) and CD31 in hepatocellular carcinoma tissues. Lentiviral transfection of short hairpin RNA target genes was used to construct LDLR-knockdown MHCC-97H and HLE hepatocellular carcinoma cells. The differential genes and their expression level changes in LDLR-knockdown hepatocellular carcinoma cells were detected by transcriptome sequencing, real-time fluorescence quantitative polymerase chain reaction, and protein immunoblotting. The gene-related signaling pathways that involve LDLR were clarified by enrichment analysis. The effect of LDLR on CEA was assessed by the detection of CEA content in conditioned medium of hepatocellular carcinoma cells. Angiogenesis assay was used to detect the effect of LDLR on the angiogenic capacity of human umbilical vein endothelial cells, as well as the role of CEA in the regulation of angiogenesis by LDLR. Immunohistochemical staining was used to detect the expression levels of LDLR in 176 hepatocellular carcinoma tissues, and CEA and CD31 in 146 hepatocellular carcinoma tissues, and analyze the correlations between the expression levels of LDLR, CEA, and CD31 in the tissues, serum CEA, and alanine transaminase (ALT). Results: Oncomine database analysis showed that the expressions of LDLR and CEA in the tissues of hepatocellular carcinoma patients with portal vein metastasis were negatively correlated (r=-0.64, P=0.001), whereas the expressions of CEA and CD31 in these tissues were positively correlated ( r=0.46, P=0.010). The transcriptome sequencing results showed that there were a total of 1 032 differentially expressed genes in the LDLR-knockdown group and the control group of MHCC-97H cells, of which 517 genes were up-regulated and 515 genes were down-regulated. The transcript expression level of CEACAM5 was significantly up-regulated in the cells of the LDLR-knockdown group. The Gene Ontology (GO) function enrichment analysis showed that the differential genes were most obviously enriched in the angiogenesis function. The Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis showed that the relevant pathways involved mainly included the cellular adhesion patch, the extracellular matrix receptor interactions, and the interactions with the extracellular matrix receptors. The CEA content in the conditioned medium of the LDLR-knockdown group was 43.75±8.43, which was higher than that of the control group (1.15±0.14, P<0.001). The results of angiogenesis experiments showed that at 5 h, the number of main junctions, the number of main segments, and the total area of the lattice formed by HUVEC cells cultured with the conditioned medium of MHCC-97H cells in the LDLR-knockdown group were 295.3±26.4, 552.5±63.8, and 2 239 781.0±13 8211.9 square pixels, which were higher than those of the control group (113.3±23.5, 194.8±36.5, and 660 621.0±280 328.3 square pixels, respectively, all P<0.01).The number of vascular major junctions, the number of major segments, and the total area of the lattice formed by HUVEC cells cultured in conditioned medium with HLE cells in the LDLR-knockdown group were 245.3±42.4, 257.5±20.4, and 2 535 754.5±249 094.2 square pixels, respectively, which were all higher than those of the control group (113.3±23.5, 114.3±12.2, and 1 565 456.5±219 259.7 square pixels, respectively, all P<0.01). In the conditioned medium for the control group of MHCC-97H cells,the number of main junctions, the number of main segments, and the total area of the lattice formed by the addition of CEA to cultured HUVEC cells were 178.9±12.0, 286.9±12.3, and 1 966 990.0±126 249.5 spixels, which were higher than those in the control group (119.7±22.1, 202.7±33.7, and 1 421 191.0±189 837.8 square pixels, respectively). The expression of LDLR in hepatocellular carcinoma tissues was not correlated with the expression of CEA, but was negatively correlated with the expression of CD31 (r=-0.167, P=0.044), the level of serum CEA (r=-0.061, P=0.032), and the level of serum ALT(r=-0.147,P=0.05). The expression of CEA in hepatocellular carcinoma tissues was positively correlated with the expression of CD31 (r=0.192, P=0.020). The level of serum CEA was positively correlated with the level of serum ALT (r=0.164, P=0.029). Conclusion: Knocking down LDLR can promote vascular abnormalities in HCC by releasing CEA.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neovascularização Patológica , Receptores de LDL , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/irrigação sanguínea , Receptores de LDL/metabolismo , Receptores de LDL/genética , Linhagem Celular Tumoral , Neovascularização Patológica/metabolismo , Antígeno Carcinoembrionário/metabolismo , Antígeno Carcinoembrionário/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Transcriptoma , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética
4.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731489

RESUMO

Gallic acid (GA) is a type of polyphenolic compound that can be found in a range of fruits, vegetables, and tea. Although it has been confirmed it improves non-alcoholic fatty liver disease (NAFLD), it is still unknown whether GA can improve the occurrence of NAFLD by increasing the low-density lipoprotein receptor (LDLR) accumulation and alleviating cholesterol metabolism disorders. Therefore, the present study explored the effect of GA on LDLR and its mechanism of action. The findings indicated that the increase in LDLR accumulation in HepG2 cells induced by GA was associated with the stimulation of the epidermal growth factor receptor-extracellular regulated protein kinase (EGFR-ERK1/2) signaling pathway. When the pathway was inhibited by EGFR mab cetuximab, it was observed that the activation of the EGFR-ERK1/2 signaling pathway induced by GA was also blocked. At the same time, the accumulation of LDLR protein and the uptake of LDL were also suppressed. Additionally, GA can also promote the accumulation of forkhead box O3 (FOXO3) and suppress the accumulation of hepatocyte nuclear factor-1α (HNF1α), leading to the inhibition of proprotein convertase subtilisin/kexin 9 (PCSK9) mRNA expression and protein accumulation. This ultimately results in increased LDLR protein accumulation and enhanced uptake of LDL in cells. In summary, the present study revealed the potential mechanism of GA's role in ameliorating NAFLD, with a view of providing a theoretical basis for the dietary supplementation of GA.


Assuntos
Ácido Gálico , Lipoproteínas LDL , Receptores de LDL , Humanos , Ácido Gálico/farmacologia , Receptores de LDL/metabolismo , Células Hep G2 , Lipoproteínas LDL/metabolismo , Receptores ErbB/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética
5.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612772

RESUMO

Oral cancer ranks fourth among malignancies among Taiwanese men and is the eighth most common cancer among men worldwide in terms of general diagnosis. The purpose of the current study was to investigate how low-density lipoprotein receptor-related protein 1B (LDL receptor related protein 1B; LRP1B) gene polymorphisms affect oral squamous cell carcinoma (OSCC) risk and progression in individuals with diabetes mellitus (DM). Three LRP1B single-nucleotide polymorphisms (SNPs), including rs10496915, rs431809, and rs6742944, were evaluated in 311 OSCC cases and 300 controls. Between the case and control groups, we found no evidence of a significant correlation between the risk of OSCC and any of the three specific SNPs. Nevertheless, in evaluating the clinicopathological criteria, individuals with DM who possess a minimum of one minor allele of rs10496915 (AC + CC; p = 0.046) were significantly associated with tumor size compared with those with homozygous major alleles (AA). Similarly, compared to genotypes homologous for the main allele (GG), rs6742944 genotypes (GA + AA; p = 0.010) were more likely to develop lymph node metastases. The tongue and the rs6742944 genotypes (GA + AA) exhibited higher rates of advanced clinical stages (p = 0.024) and lymph node metastases (p = 0.007) when compared to homozygous alleles (GG). LRP1B genetic polymorphisms appear to be prognostic and diagnostic markers for OSCC and DM, as well as contributing to genetic profiling research for personalized medicine.


Assuntos
Carcinoma de Células Escamosas , Diabetes Mellitus , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Masculino , Humanos , Neoplasias Bucais/genética , Metástase Linfática , Carcinoma de Células Escamosas/genética , Polimorfismo de Nucleotídeo Único , Carcinoma de Células Escamosas de Cabeça e Pescoço , Receptores de LDL/genética
6.
J Chem Inf Model ; 64(9): 3923-3932, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615325

RESUMO

The protein PCSK9 (proprotein convertase subtilisin/Kexin type 9) negatively regulates the recycling of LDLR (low-density lipoprotein receptor), leading to an elevated plasma level of LDL. Inhibition of PCSK9-LDLR interaction has emerged as a promising therapeutic strategy to manage hypercholesterolemia. However, the large interaction surface area between PCSK9 and LDLR makes it challenging to identify a small molecule competitive inhibitor. An alternative strategy would be to identify distal cryptic sites as targets for allosteric inhibitors that can remotely modulate PCSK9-LDLR interaction. Using several microseconds long molecular dynamics (MD) simulations, we demonstrate that on binding with LDLR, there is a significant conformational change (population shift) in a distal loop (residues 211-222) region of PCSK9. Consistent with the bidirectional nature of allostery, we establish a clear correlation between the loop conformation and the binding affinity with LDLR. Using a thermodynamic argument, we establish that the loop conformations predominantly present in the apo state of PCSK9 would have lower LDLR binding affinity, and they would be potential targets for designing allosteric inhibitors. We elucidate the molecular origin of the allosteric coupling between this loop and the LDLR binding interface in terms of the population shift in a set of salt bridges and hydrogen bonds. Overall, our work provides a general strategy toward identifying allosteric hotspots: compare the conformational ensemble of the receptor between the apo and bound states of the protein and identify distal conformational changes, if any. The inhibitors should be designed to bind and stabilize the apo-specific conformations.


Assuntos
Simulação de Dinâmica Molecular , Pró-Proteína Convertase 9 , Ligação Proteica , Receptores de LDL , Receptores de LDL/metabolismo , Receptores de LDL/química , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/química , Regulação Alostérica , Humanos , Conformação Proteica , Termodinâmica , Inibidores de PCSK9
7.
Medicine (Baltimore) ; 103(17): e37966, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669390

RESUMO

Immune checkpoint inhibitors (ICIs) significantly improve the survival outcomes of patients with advanced melanoma. However, response varies among from patient to patient and predictive biomarkers are urgently needed. We integrated mutational profiles from next-generation sequencing (NGS) data and clinicopathologic characteristics of melanoma patients to investigate whether tumor genomic profiling contribute to clinical benefit of ICIs treatment. The majority of genes identified with high mutation frequency have all been reported as well-known immunotherapy-related genes. Thirty-five patients (43.2%) had at least 1 BRAF/RAS/NF1 mutation. The other 46 (56.8%) melanomas without BRAF/RAS/NF1 mutation were classified as Triple-WT. We identified mutational signature 6 (known as associated with defective DNA mismatch repair) among cases in this cohort. Compared to patients with PD-L1 expression (TPS < 1%), patients with PD-L1 expression (TPS ≥ 1%) had significantly higher median progression-free survival (mPFS), but no significantly higher durable clinical benefit (DCB) rate. In contrast, FAT1, ATM, BRCA2, LRP1B, and PBRM1 mutations only occurred frequently in patients with DCB, irrespective of PD-L1 expression status. Our study explored molecular signatures of melanoma patients who respond to ICIs treatment and identified a series of mutated genes that might serve as predictive biomarker for ICIs responses in melanoma.


Assuntos
Caderinas , Inibidores de Checkpoint Imunológico , Melanoma , Mutação , Neurofibromina 1 , Proteínas Proto-Oncogênicas B-raf , Receptores de LDL , Humanos , Melanoma/genética , Melanoma/tratamento farmacológico , Melanoma/imunologia , Melanoma/mortalidade , Masculino , Feminino , Inibidores de Checkpoint Imunológico/uso terapêutico , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas B-raf/genética , Idoso , Biomarcadores Tumorais/genética , Sequenciamento de Nucleotídeos em Larga Escala , Antígeno B7-H1/genética , Adulto , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/mortalidade , Intervalo Livre de Progressão , Proteínas Proto-Oncogênicas p21(ras)/genética
8.
Sci Rep ; 14(1): 9471, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658568

RESUMO

Most metastases in breast cancer occur via the dissemination of tumor cells through the bloodstream. How tumor cells enter the blood (intravasation) is, however, a poorly understood mechanism at the cellular and molecular levels. Particularly uncharacterized is how intravasation is affected by systemic nutrients. High levels of systemic LDL-cholesterol have been shown to contribute to breast cancer progression and metastasis in various models, but the cellular and molecular mechanisms involved are still undisclosed. Here we show that a high- cholesterol diet promotes intravasation in two mouse models of breast cancer and that this could be reverted by blocking LDL binding to LDLR in tumor cells. Moreover, we show that LDL promotes vascular invasion in vitro and the intercalation of tumor cells with endothelial cells, a phenotypic change resembling vascular mimicry (VM). At the molecular level, LDL increases the expression of SERPINE2, previously shown to be required for both VM and intravasation. Overall, our manuscript unravels novel mechanisms by which systemic hypercholesterolemia may affect the onset of metastatic breast cancer by favouring phenotypic changes in breast cancer cells and increasing intravasation.


Assuntos
Neoplasias da Mama , Receptores de LDL , Animais , Receptores de LDL/metabolismo , Receptores de LDL/genética , Feminino , Camundongos , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Invasividade Neoplásica , Colesterol na Dieta/efeitos adversos , LDL-Colesterol/metabolismo , LDL-Colesterol/sangue , Lipoproteínas LDL/metabolismo , Colesterol/metabolismo , Colesterol/sangue
9.
Nat Commun ; 15(1): 3068, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594269

RESUMO

Polyunsaturated fatty acids (PUFAs), which cannot be synthesized by animals and must be supplied from the diet, have been strongly associated with human health. However, the mechanisms for their accretion remain poorly understood. Here, we show that LDL receptor-related protein 5 (LRP5), but not its homolog LRP6, selectively transports unesterified PUFAs into a number of cell types. The LDLa ligand-binding repeats of LRP5 directly bind to PUFAs and are required and sufficient for PUFA transport. In contrast to the known PUFA transporters Mfsd2a, CD36 and FATP2, LRP5 transports unesterified PUFAs via internalization to intracellular compartments including lysosomes, and n-3 PUFAs depend on this transport mechanism to inhibit mTORC1. This LRP5-mediated PUFA transport mechanism suppresses extracellular trap formation in neutrophils and protects mice from myocardial injury during ischemia-reperfusion. Thus, this study reveals a biologically important mechanism for unesterified PUFA transport to intracellular compartments.


Assuntos
Ácidos Graxos Ômega-3 , Ácidos Graxos Insaturados , Animais , Humanos , Camundongos , Dieta , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Insaturados/metabolismo , Receptores de LDL
10.
BMC Cancer ; 24(1): 445, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600469

RESUMO

BACKGROUND: Proprotein convertase subtilisin/kexin type 9 (PCSK9), the last member of the proprotein convertase family, functions as a classic regulator of low-density lipoprotein (LDL) by interacting with low-density lipoprotein receptor (LDLR). Recent studies have shown that PCSK9 can affect the occurrence and development of tumors and can be used as a novel therapeutic target. However, a comprehensive pan-cancer analysis of PCSK9 has yet to be conducted. METHODS: The potential oncogenic effects of PCSK9 in 33 types of tumors were explored based on the datasets of The Cancer Genome Atlas (TCGA) dataset. In addition, the immune regulatory role of PCSK9 inhibition was evaluated via in vitro cell coculture and the tumor-bearing mouse model. Finally, the antitumor efficacy of targeted PCSK9 combined with OVA-II vaccines was verified. RESULTS: Our results indicated that PCSK9 was highly expressed in most tumor types and was significantly correlated with late disease stage and poor prognosis. Additionally, PCSK9 may regulate the tumor immune matrix score, immune cell infiltration, immune checkpoint expression, and major histocompatibility complex expression. Notably, we first found that dendritic cell (DC) infiltration and major histocompatibility complex-II (MHC-II) expression could be upregulated by PCSK9 inhibition and improve CD8+ T cell activation in the tumor immune microenvironment, thereby achieving potent tumor control. Combining PCSK9 inhibitors could enhance the efficacies of OVA-II tumor vaccine monotherapy. CONCLUSIONS: Conclusively, our pan-cancer analysis provided a more comprehensive understanding of the oncogenic and immunoregulatory roles of PCSK9 and demonstrated that targeting PCSK9 could increase the efficacy of long peptide vaccines by upregulating DC infiltration and MHC-II expression on the surface of tumor cells. This study reveals the critical oncogenic and immunoregulatory roles of PCSK9 in various tumors and shows the promise of PCSK9 as a potent immunotherapy target.


Assuntos
Genes MHC da Classe II , Imunoterapia , Neoplasias , Pró-Proteína Convertase 9 , Pró-Proteína Convertases , Animais , Camundongos , Antígenos de Histocompatibilidade , Lipoproteínas LDL , Neoplasias/genética , Neoplasias/terapia , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertases/antagonistas & inibidores , Receptores de LDL/genética , Microambiente Tumoral
11.
Phytochemistry ; 222: 114107, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663823

RESUMO

The isolation of previously undescribed 12 compounds from the MeOH extract of Jacobaea vulgaris whole plants is disclosed, comprising 11 dihydrostilbenes (1-11) and one flavanone (12), and eight known compounds (six flavonoids, one dihydrostilbene, and one caffeoylquinic acid). Structural elucidation employed spectroscopic methods, including 1D and 2D NMR spectroscopy, HRESIMS, and ECD calculations. Evaluation of the compounds' effects on PCSK9 and LDLR mRNA expression revealed that compounds 1 and 3 downregulated PCSK9 mRNA while increasing LDLR mRNA expression, suggesting potential cholesterol-lowering properties.


Assuntos
Flavonoides , Estilbenos , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Estilbenos/química , Estilbenos/isolamento & purificação , Estilbenos/farmacologia , Estrutura Molecular , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética , Humanos , Receptores de LDL/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
12.
J Physiol ; 602(9): 1939-1951, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38606903

RESUMO

Recombinant human proteoglycan 4 (rhPRG4) is a macromolecular mucin-like glycoprotein that is classically studied as a lubricant within eyes and joints. Given that endogenously produced PRG4 is present within atherosclerotic lesions and genetic PRG4 deficiency increases atherosclerosis susceptibility in mice, in the current study we investigated the anti-atherogenic potential of chronic rhPRG4 treatment. Female low-density lipoprotein receptor knockout mice were fed an atherogenic Western-type diet for 6 weeks and injected three times per week intraperitoneally with 0.5 mg rhPRG4 or PBS as control. Treatment with rhPRG4 was associated with a small decrease in plasma-free cholesterol levels, without a change in cholesteryl ester levels. A marked increase in the number of peritoneal foam cells was detected in response to the peritoneal rhPRG4 administration, which could be attributed to elevated peritoneal leukocyte MSR1 expression levels. However, rhPRG4-treated mice exhibited significantly smaller aortic root lesions of 278 ± 21 × 103 µm2 compared with 339 ± 15 × 103 µm2 in the aortic root of control mice. The overall decreased atherosclerosis susceptibility coincided with a shift in the monocyte and macrophage polarization states towards the patrolling and anti-inflammatory M2-like phenotypes, respectively. Furthermore, rhPRG4 treatment significantly reduced macrophage gene expression levels as well as plasma protein levels of the pro-inflammatory/pro-atherogenic cytokine TNF-alpha. In conclusion, we have shown that peritoneal administration and subsequent systemic exposure to rhPRG4 beneficially impacts the inflammatory state and reduces atherosclerosis susceptibility in mice. Our findings highlight that PRG4 is not only a lubricant but also acts as an anti-inflammatory agent. KEY POINTS: Endogenously produced proteoglycan 4 is found in atherosclerotic lesions and its genetic deficiency in mice is associated with enhanced atherosclerosis susceptibility. In this study we investigated the anti-atherogenic potential of chronic treatment with recombinant human PRG4 in hypercholesterolaemic female low-density lipoprotein receptor knockout mice. We show that recombinant human PRG4 stimulates macrophage foam cell formation, but also dampens the pro-inflammatory state of monocyte/macrophages, eventually leading to a significant reduction in plasma TNF-alpha levels and a lowered atherosclerosis susceptibility. Our findings highlight that peritoneal recombinant human PRG4 treatment can execute effects both locally and systemically and suggest that it will be of interest to study whether rhPRG4 treatment is also able to inhibit the progression and/or induce regression of previously established atherosclerotic lesions.


Assuntos
Aterosclerose , Inflamação , Camundongos Knockout , Proteoglicanas , Receptores de LDL , Proteínas Recombinantes , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Feminino , Proteoglicanas/farmacologia , Proteoglicanas/metabolismo , Proteoglicanas/genética , Receptores de LDL/genética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/administração & dosagem , Camundongos , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Aorta/metabolismo , Aorta/efeitos dos fármacos , Aorta/patologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Células Espumosas/metabolismo , Células Espumosas/efeitos dos fármacos
13.
Phytomedicine ; 128: 155489, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569295

RESUMO

BACKGROUND AND PURPOSE: Atherosclerosis is the primary pathological basis of cardiovascular disease. Ferroptosis is a regulated form of cell death, a process of lipid peroxidation driven by iron, which can initiate and promote atherosclerosis. STAT6 is a signal transducer that shows a potential role in regulating ferroptosis, but, the exact role in ferroptosis during atherogenesis remains unclear. The Traditional Chinese Medicine Maijitong granule (MJT) is used for treating cardiovascular disease and shows a potential inhibitory effect on ferroptosis. However, the antiatherogenic effect and the underlying mechanism remain unclear. In this study, we determined the role of STAT6 in ferroptosis during atherogenesis, investigated the antiatherogenic effect of MJT, and determined whether its antiatherogenic effect was dependent on the inhibition of ferroptosis. METHODS: 8-week-old male LDLR-/- mice were fed a high-fat diet (HFD) at 1st and 10th week, respectively, to assess the preventive and therapeutic effects of MJT on atherosclerosis and ferroptosis. Simultaneously, the anti-ferroptotic effects and mechanism of MJT were determined by evaluating the expression of genes responsible for lipid peroxidation and iron metabolism. Subsequently, we reanalyzed microarray data in the GSE28117 obtained from cells after STAT6 knockdown or overexpression and analyzed the correlation between STAT6 and ferroptosis. Finally, the STAT6-/- mice were fed HFD and injected with AAV-PCSK9 to validate the role of STAT6 in ferroptosis during atherogenesis and revealed the antiatherogenic and anti-ferroptotic effect of MJT. RESULTS: MJT attenuated atherosclerosis by reducing plaque lesion area and enhancing plaque stability in both preventive and therapeutic groups. MJT reduced inflammation via suppressing inflammatory cytokines and inhibited foam cell formation by lowering the LDL level and promoting ABCA1/G1-mediated lipid efflux. MJT ameliorated the ferroptosis by reducing lipid peroxidation and iron dysregulation during atherogenesis. Mechanistically, STAT6 negatively regulated ferroptosis by transcriptionally suppressing SOCS1/p53 and DMT1 pathways. MJT suppressed the DMT1 and SOCS1/p53 via stimulating STAT6 phosphorylation. In addition, STAT6 knockout exacerbated atherosclerosis and ferroptosis, which abolished the antiatherogenic and anti-ferroptotic effects of MJT. CONCLUSION: STAT6 acts as a negative regulator of ferroptosis and atherosclerosis via transcriptionally suppressing DMT1 and SOCS1 expression and MJT attenuates atherosclerosis and ferroptosis by activating the STAT6-mediated inhibition of DMT1 and SOCS1/p53 pathways, which indicated that STAT6 acts a novel promising therapeutic target to ameliorate atherosclerosis by inhibiting ferroptosis and MJT can serve as a new therapy for atherosclerosis treatment.


Assuntos
Aterosclerose , Proteínas de Transporte de Cátions , Medicamentos de Ervas Chinesas , Ferroptose , Fator de Transcrição STAT6 , Proteína 1 Supressora da Sinalização de Citocina , Animais , Ferroptose/efeitos dos fármacos , Aterosclerose/tratamento farmacológico , Fator de Transcrição STAT6/metabolismo , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptores de LDL/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
Atherosclerosis ; 392: 117506, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518516

RESUMO

BACKGROUND AND AIMS: Long noncoding RNAs are involved in the pathogenesis of atherosclerosis. As long noncoding RNAs maternally expressed gene 3 (Meg3) prevents cellular senescence of hepatic vascular endothelium and obesity-induced insulin resistance, we decided to examine its role in cellular senescence and atherosclerosis. METHODS AND RESULTS: By analyzing our data and human and mouse data from the Gene Expression Omnibus database, we found that Meg3 expression was reduced in humans and mice with cardiovascular disease, indicating its potential role in atherosclerosis. In Ldlr-/- mice fed a Western diet for 12 weeks, Meg3 silencing by chemically modified antisense oligonucleotides attenuated the formation of atherosclerotic lesions by 34.9% and 20.1% in male and female mice, respectively, revealed by en-face Oil Red O staining, which did not correlate with changes in plasma lipid profiles. Real-time quantitative PCR analysis of cellular senescence markers p21 and p16 revealed that Meg3 deficiency aggravates hepatic cellular senescence but not cellular senescence at aortic roots. Human Meg3 transgenic mice were generated to examine the role of Meg3 gain-of-function in the development of atherosclerosis induced by PCSK9 overexpression. Meg3 overexpression promotes atherosclerotic lesion formation by 29.2% in Meg3 knock-in mice independent of its effects on lipid profiles. Meg3 overexpression inhibits hepatic cellular senescence, while it promotes aortic cellular senescence likely by impairing mitochondrial function and delaying cell cycle progression. CONCLUSIONS: Our data demonstrate that Meg3 promotes the formation of atherosclerotic lesions independent of its effects on plasma lipid profiles. In addition, Meg3 regulates cellular senescence in a tissue-specific manner during atherosclerosis. Thus, we demonstrated that Meg3 has multifaceted roles in cellular senescence and atherosclerosis.


Assuntos
Aterosclerose , Senescência Celular , Camundongos Knockout , Pró-Proteína Convertase 9 , RNA Longo não Codificante , Receptores de LDL , Animais , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Humanos , Masculino , Feminino , Receptores de LDL/genética , Receptores de LDL/metabolismo , Pró-Proteína Convertase 9/metabolismo , Pró-Proteína Convertase 9/genética , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Camundongos , Placa Aterosclerótica , Camundongos Endogâmicos C57BL , Doenças da Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Mitocôndrias/metabolismo , Transdução de Sinais , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética
15.
PLoS One ; 19(3): e0297231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507394

RESUMO

Familial hypercholesterolemia is an inherited disorder that remains underdiagnosed. Conventional genetic testing methods such as next-generation sequencing (NGS) or target PCR are based on the amplification process. Due to the efficiency limits of polymerase and ligase enzymes, these methods usually target short regions and do not detect large mutations straightforwardly. This study combined the long-read nanopore sequencing and CRISPR-Cas9 system to sequence the target DNA molecules without amplification. We originally designed and optimized the CRISPR-RNA panel to target the low-density lipoprotein receptor gene (LDLR) and proprotein convertase subtilisin/kexin type 9 gene (PCSK9) from human genomic DNA followed by nanopore sequencing. The average coverages for LDLR and PCSK9 were 106× and 420×, versus 1.2× for the background genome. Among them, continuous reads were 52x and 307x, respectively, and spanned the entire length of LDLR and PCSK9. We identified pathogenic mutations in both coding and splicing donor regions in LDLR. We also detected an 11,029 bp large deletion in another case. Furthermore, using continuous long reads generated from the benchmark experiment, we demonstrated how a false-positive 670 bp deletion caused by PCR amplification errors was easily eliminated.


Assuntos
Hiperlipoproteinemia Tipo II , Sequenciamento por Nanoporos , Humanos , Pró-Proteína Convertase 9/genética , Sistemas CRISPR-Cas/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Mutação , Genômica , DNA
16.
Zhonghua Xin Xue Guan Bing Za Zhi ; 52(3): 281-285, 2024 Mar 24.
Artigo em Chinês | MEDLINE | ID: mdl-38514330

RESUMO

Objective: To evaluate the diagnostic value of gene testing in familial hypercholesterolemia (FH) in patients with premature myocardial infarction(PMI). Methods: This study was a single center cross-sectional study. A retrospective analysis was made on PMI patients who visited the People's Hospital of Peking University from May 1, 2015 to March 31, 2017. Clinical data of patients was collected and gene testing of FH related genes low density lipoprotein receptor (LDLR), proprotein convertase subtilisin/kexin type 9 (PCSK9), apolipoprotein B(APOB) and low density lipoprotein receptor adaptor protein 1(LDLRAP1) was carried out. Clinical diagnosis of FH patients was performed using Simon Broome criteria, DLCN criteria, and FH Chinese expert consensus. Results: There were 188 males (83.6%) among 225 PMI patients, and the age of the first myocardial infarction was (46.6±7.2) years old. Ten patients carried FH pathogenic or possibly pathogenic mutations (4.4%). Compared with Simon Broome standard, DLCN standard and FH Chinese expert consensus, gene testing increased the diagnostic rate of FH by 53.3%, 33.3% and 42.1% respectively. Conclusion: Gene testing is helpful to improve the diagnosis of FH, and it is important to start the standard treatment of FH as early as possible in patients with premature myocardial infarction.


Assuntos
Hiperlipoproteinemia Tipo II , Infarto do Miocárdio , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Pró-Proteína Convertase 9/genética , Estudos Retrospectivos , Estudos Transversais , Testes Genéticos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Mutação , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Receptores de LDL/genética
17.
Lipids Health Dis ; 23(1): 85, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515137

RESUMO

BACKGROUND: Familial hypercholesterolemia (FH) is a prevalent hereditary disease that can cause aberrant cholesterol metabolism. In this study, we confirmed that c.415G > A in low-density lipoprotein receptor (LDLR), an FH-related gene, is a pathogenic variant in FH by in silico analysis and functional experiments. METHODS: The proband and his family were evaluated using the diagnostic criteria of the Dutch Lipid Clinic Network. Whole-exome and Sanger sequencing were used to explore and validate FH-related variants. In silico analyses were used to evaluate the pathogenicity of the candidate variant and its impact on protein stability. Molecular and biochemical methods were performed to examine the effects of the LDLR c.415G > A variant in vitro. RESULTS: Four of six participants had a diagnosis of FH. It was estimated that the LDLR c.415G > A variant in this family was likely pathogenic. Western blotting and qPCR suggested that LDLR c.415G > A does not affect protein expression. Functional studies showed that this variant may lead to dyslipidemia by impairing the binding and absorption of LDLR to low-density lipoprotein ( LDL). CONCLUSION: LDLR c.415G > A is a pathogenic variant in FH; it causes a significant reduction in LDLR's capacity to bind LDL, resulting in impaired LDL uptake. These findings expand the spectrum of variants associated with FH.


Assuntos
Hiperlipoproteinemia Tipo II , Humanos , Fenótipo , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Receptores de LDL/genética , Receptores de LDL/metabolismo , Lipoproteínas LDL/genética , Mutação , Pró-Proteína Convertase 9/genética
18.
J Lipid Res ; 65(4): 100531, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490635

RESUMO

Altered apolipoprotein kinetics play a critical role in promoting dyslipidemia and atherogenesis. Human apolipoprotein kinetics have been extensively evaluated, but similar studies in mice are hampered by the lack of robust methods suitable for the small amounts of blood that can be collected at sequential time points from individual mice. We describe a targeted liquid chromatography tandem mass spectrometry method for simultaneously quantifying the stable isotope enrichment of several apolipoproteins represented by multiple peptides in serial blood samples (15 µl each) obtained after retro-orbital injection of 13C6,15N2-lysine (Lys8) in mice. We determined apolipoprotein fractional clearance rates (FCRs) and production rates (PRs) in WT mice and in two genetic models widely used for atherosclerosis research, LDL receptor-deficient (Ldlr-/-) and apolipoprotein E-deficient (Apoe-/-) mice. Injection of Lys8 produced a unique and readily detectable mass shift of labeled compared with unlabeled peptides with sensitivity allowing robust kinetics analyses. Ldlr-/- mice showed slower FCRs of APOA1, APOA4, total APOB, APOB100, APOCs, APOE and APOM, while FCRs of APOA1, APOB100, APOC2, APOC3, and APOM were not lower in Apoe-/- mice versus WT mice. APOE PR was increased in Ldlr-/- mice, and APOB100 and APOA4 PRs were reduced in Apoe-/- mice. Thus, our method reproducibly quantifies plasma apolipoprotein kinetics in different mouse models. The method can easily be expanded to include a wide range of proteins in the same biospecimen and should be useful for determining the kinetics of apolipoproteins in animal models of human disease.


Assuntos
Apolipoproteínas , Marcação por Isótopo , Proteômica , Animais , Camundongos , Proteômica/métodos , Apolipoproteínas/sangue , Cinética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Apolipoproteínas E/deficiência , Apolipoproteínas E/sangue , Cromatografia Líquida/métodos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Masculino
19.
Sci Rep ; 14(1): 6785, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514665

RESUMO

Familial hypercholesterolemia (FH) is a genetic disease characterized by elevated LDL-C levels. In this study, two FH probands and 9 family members from two families from northeastern Thailand were tested for LDLR, APOB, and PCSK9 variants by whole-exome sequencing, PCR-HRM, and Sanger sequencing. In silico analysis of LDLR was performed to analyse its structure‒function relationship. A novel variant of LDLR (c.535_536delinsAT, p.Glu179Met) was detected in proband 1 and proband 2 in homozygous and heterozygous forms, respectively. A total of 6 of 9 family members were heterozygous for LDLR p.Glu179Met variant. Compared with proband 2, proband 1 had higher baseline TC and LDL-C levels and a poorer response to lipid-lowering therapy combined with a PCSK9 inhibitor. Multiple sequence alignment showed that LDLR p.Glu179Met was located in a fully conserved region. Homology modelling demonstrated that LDLR p.Glu179Met variant lost one H-bond and a negative charge. In conclusion, a novel LDLR p.Glu179Met variant was identified for the first time in Thai FH patients. This was also the first report of homozygous FH patient in Thailand. Our findings may expand the knowledge of FH-causing variants in Thai population, which is beneficial for cascade screening, genetic counselling, and FH management to prevent coronary artery disease.


Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Humanos , LDL-Colesterol/genética , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/diagnóstico , Mutação , Fenótipo , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética , Tailândia
20.
FASEB J ; 38(6): e23573, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38526846

RESUMO

Familial hypercholesterolemia (FH) is one of the most prevalent monogenetic disorders leading to cardiovascular disease (CVD) worldwide. Mutations in Ldlr, encoding a membrane-spanning protein, account for the majority of FH cases. No effective and safe clinical treatments are available for FH. Adenine base editor (ABE)-mediated molecular therapy is a promising therapeutic strategy to treat genetic diseases caused by point mutations, with evidence of successful treatment in mouse disease models. However, due to the differences in the genomes between mice and humans, ABE with specific sgRNA, a key gene correction component, cannot be directly used to treat FH patients. Thus, we generated a knock-in mouse model harboring the partial patient-specific fragment and including the Ldlr W490X mutation. LdlrW490X/W490X mice recapitulated cholesterol metabolic disorder and clinical manifestations of atherosclerosis associated with FH patients, including high plasma low-density lipoprotein cholesterol levels and lipid deposition in aortic vessels. Additionally, we showed that the mutant Ldlr gene could be repaired using ABE with the cellular model. Taken together, these results pave the way for ABE-mediated molecular therapy for FH.


Assuntos
Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Humanos , Camundongos , Animais , RNA Guia de Sistemas CRISPR-Cas , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/terapia , Mutação , Hipercolesterolemia/genética , Colesterol , Receptores de LDL/genética , Receptores de LDL/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...